当前位置:网站首页 > 科技 > 正文

人工智能在医学的应用 (人工智能在医学的应用论文)

作者:admin 发布时间:2023-03-01 14:02:16 分类:科技 浏览:783 评论:0


导读:人工智能在医学的应用目前,人工智能在医疗领域的应用将主要集中在这几方面。诊断疾病、个体化用药、药物开发、临床试验、放射治疗和放射学、电子健康记录。1、诊断疾病:医学面临的最大挑战...

人工智能在医学的应用

目前,人工智能在医疗领域的应用将主要集中在这几方面。诊断疾病、个体化用药、药物开发、临床试验、放射治疗和放射学、电子健康记录。

1、诊断疾病:医学面临的最大挑战是疾病的正确诊断和识别,这也是机器学习发展的重中之重。2015年的一份报告显示,针对超800种癌症的治疗方案正在临床试验中。而利用机器学习可使癌症识别更加精确。

2、个体化用药:关于使用机器学习和预测分析来定制针对个人的特异性治疗潜能,目前正处于研究中。如果成功,这一策略可以优化诊断和治疗方案。

目前,研究的重点是有监督的学习,医生可以利用遗传信息和症状缩小诊断范围,或对患者的风险做出有根据的推测。这可以促进更好的预防措施。

3、药物开发:机器学习在早期药物发现(如新药开发)和研发技术(如下一代测序)中发挥着许多作用。这一领域的第一项是精确医学,它使复杂疾病的识别和可能的治疗方式更有效。MIT临床机器学习小组是使用机器学习促成精密医学的主要参与者之一,侧重于算法开发。

4、临床试验:临床试验研究是一个漫长而艰巨的过程。机器学习可以在各种方面帮助缩短这一过程。一种策略是通过对广泛的数据使用高级预测分析,从而更快地确定目标人群的临床试验候选人。

麦肯锡( McKinsey )的分析师描述了其他机器学习应用程序,这些应用程序可以通过简化计算理想样本大小、方便患者招募以及使用病历将数据错误降至最低等任务来提高临床试验的效率。

5、放射治疗和放射学:哈佛医学院助理教授Ziad Obermeyer博士在2016年的一次采访中表示:“20年后,放射学家将不会以现在的形式存在。它们看起来更像是电子机器人:监督每分钟阅读数千份研究报告的算法。

目前,伦敦大学学院医院的deep mind Health正在开发机器学习算法,通过区分健康组织和癌症组织来提高放射治疗计划的准确性。

6、电子健康记录:支持向量机(Support vector machines用于分类患者电子邮件查询的技术)和光学字符识别(用于数字化手写笔记的技术)是用于文档分类的机器学习系统的基本组件。

这些技术的应用案例包括MathWorks的MATLAB (一个具有手写识别应用程序的机器学习工具)和谷歌的云视觉API。

MIT临床机器学习小组的重点之一是开发基于机器学习的智能电子健康记录技术,其理念是开发“安全、可解释、能从少量标记的训练数据中学习、理解自然语言、并能在医疗环境和机构中很好地推广的强大机器学习算法”。

人工智能在医学的应用论文

人工智能医疗行业主要公司:目前国内人工智能医疗行业代表性公司主要有:乐普医疗(300003)、鹰瞳科技(2251.HK)、心玮医疗(06609.HK)、美因基因(IPO中)、推想医疗科技(IPO中)等

本文核心数据:人工智能的发展路径、市场规模,人工智能医疗相关政策、人工智能医疗投融资数据

1、人工智能发展路径及市场规模

——发展路径

人工智能(AI)是计算机科学的一个分支,通过智能系统模拟人类智能,达到机器展示人类智能的目的,如图像分析、语音识别等。自20世纪50年代以来,人工智能技术日趋成熟,应用场景也愈加广泛,相对于制造业、通信传媒、零售、教育等人工智能应用场景,AI医疗具有广阔的市场以及多元化的需求。

——市场规模

麦肯锡咨询的数据表明,人工智能每年能创造3.5万亿至5.8万亿美元的商业价值。根据IDC数据,预计到2025年全球人工智能应用市场总值将达1270亿美元,其中全球AI医疗处于高速成长期,占人工智能市场五分之一。我国人工智能产业发展快速,自2018年AI应用于基因测序以来,AI医疗的商业化模型逐步形成,2019年后,AI医疗以40%~60%的增速快速发展,如今中国AI医疗核心软件市场规模接近30亿元,加上带有重资产性质的AI医疗机器人,总体规模接近60亿元。

2、人工智能医疗底层基础逐渐完善

——产业进入商业模式构建阶段

国务院于2017年发布的《新一代人工智能发展规划》提到需要推广应用人工智能能治疗新模式、新手段,建立快速精准的智能医疗体系。2018年政府要求人工智能向基层领域自上而下渗透,进一步明确了在医疗影像、智能服务机器人等细分行业发展的目标与大方向。

2021年7月,国家药监局发布《人工智能医用软件产品分类界定指导原则》,明确人工智能医用软件产品的类别界定:用于辅助决策,按照第三类医疗器械管理目前已有四十余款AI类产品获批上市。

——人工智能医疗底层技术成熟

2012-2020年在医学文献中使用到的热门机器学习算法和深度学习算法包括:支持向量机(38%),主要应用于识别成像生物标志物和医疗影像分析;神经网络(34%),主要应用于生化分析、图像分析和药物开发;逻辑回归(4%),主要用于疾病风险评估和CDSS。AI医疗整体底层技术较为成熟,应用端准备充分

3、人工智能医疗投融资市场活跃

底层技术、顶层政策设计的双向增强了资本进入人工智能医疗行业的信心。2016-2020年人工智能医疗投融资规模呈现波动上升趋势,2020年中国人工智能医疗总融资金额达到39.8亿元,B轮之前的投资额占70.6%。AI医疗的未来发展应注重数据和科研的落地,如何切入到诊疗路径中解决切实的临床需求并有恰当的付费模式是商业化落地的关键。

综合以上分析,中国人工智能医疗顶层设计、商业模式、技术模式日趋成熟,投融资市场活跃,未来中国人工智能医疗行业将得到进一步发展。

以上数据参考前瞻产业研究院《中国医疗人工智能行业市场前景预测与投资战略规划分析报告》。


取消回复欢迎 发表评论:

关灯